Aurora Pribram-Jones

Contact information:

Lawrence Livermore National Laboratory
7000 East Avenue, L-413
Livermore, CA 94550
email: pribramjones1@llnl.gov
phone: 925-422-3969
fax: 925-423-5733

Education:

  • Ph.D., Chemistry, University of California, Irvine (2015)
  • B.S., Chemistry, Harvey Mudd College (2009)
  • A.S., Biology/Chemistry/Mathematics, Foothill College (2005)

 

Research Interests:

  • Finite-temperature potential functional theory and density functional theory methods for warm dense matter
  • Time-dependent density functional theory for thermal ensembles
  • Ensemble density functional theory
  • Density functional theory simulation of complex alloys
  • Hydrogen adsorption on metal organic frameworks
  • Density functional theory methods for x-ray spectroscopy and x-ray free electron imaging

 

Recent Publications:

  • Yang, Z.-Y.; Pribram-Jones, A.; Burke, K.; Ullrich, C.A. Direct extraction of excitation energies from ensemble density-functional theory. Phys. Rev. Lett., 119, 033003 (2017).
  • Kaufman, J.L.; Pomrehn, G.S.; Pribram-Jones, A.; Mahjoub, R.; Ferry, M.; Laws, K.J.; and Bassman, L. Stacking fault energies of non-dilute binary alloys using special quasirandom structures. Phys. Rev. B, 95, 094112 (2017).
  • Aron-Dine, S.; Pomrehn, G.S.; Pribram-Jones, A.; Laws, K.J.; Bassman, L. First principles investigation of structural and magnetic disorder in CuNiMnAl and CuNiMnSn Heusler alloys. Phys. Rev. B, 95, 024108 (2017).
  • Pribram-Jones, A.; Grabowski, P.E.; Burke, K. Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem. Phys. Rev. Lett., 116, 233001 (2016).
  • Smith, J.; Pribram-Jones, A.; Burke, K. Exact thermal density functional theory for a model system: Correlation components and accuracy for the zero-temperature exchange-correlation approximation. Phys. Rev. B, 93, 245131 (2016).
  • Burke, K.; Smith, J.; Grabowski, P.E.; Pribram-Jones, A. Exact conditions on the temperature depen- dence of density functionals. Phys. Rev. B, 93, 195132 (2016).
  • Pribram-Jones, A.; Burke, K. Connection formulas for thermal density functional theory. Phys. Rev. B, 93, 205140 (2016).
  • Cangi, A.; Pribram-Jones, A. Efficient formalism for warm dense matter simulations. Phys. Rev. B, 92, 161113(R)(2015).
  • Knudson, M.D.; Desjarlais, M.P.; Pribram-Jones, A. Adiabatic release measurements in aluminum between 400-1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime. Phys. Rev. B, 91, 224105 (2015).
  • Pribram-Jones, A.; Gross, David A.; Burke, K. DFT: A Theory Full of Holes? Ann. Rev. Phys. Chem., 66, 283-304 (2015), invited article.
  • Yang, Z.-H.; Trail, J.R.; Burke, K.; Needs, R.J.; Ullrich, C.A. Exact and approximate Kohn-Sham potentials in ensemble density-functional theory. Phys. Rev. A, 90, 042501 (2014).
  • Pribram-Jones, A.; Yang, Z.-H.; Trail, J.R.; Burke, K.; Needs, R.J.; Ullrich, C.A. Excitations and benchmark ensemble density functional theory for two electrons. J. Chem. Phys., 140, 18A541 (2014).
  • Pribram-Jones, A.; Pittalis, S.; Gross, E.K.U.; Burke, K. Thermal Density Functional Theory in Context. Frontiers and Challenges in Warm Dense Matter (F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, eds.), vol. 96 of Lecture Notes in Computational Science and Engineering, pp. 25-60, Springer International Publishing, 2014.